Необходимые растению макроэлементы и микроэлементы, их усвояемые соединения и физиологическая роль.

5 лекция

Почвенное питание растений (Корневое или минеральное)

- это процесс получения растением при помощи корней водных растворов минеральных веществ.

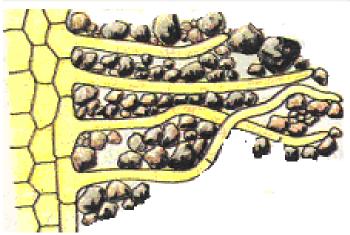
Минеральные вещества составляют 5-7% массы растения, но являются необходимой составной частью. В состав клеток входят все химические элементы, встречающиеся в неживой природе, в том числе редкие и радиоактивные элементы.

Содержание элементов в растения различно, поэтому по количеству их можно разделить на три группы:

Макроэлементы от 10 до 10⁻²%.

кислород, водород, углерод, азот, фосфор, кремний, калий, кальций, сера, магний, натрий, алюминий

Микроэлементы от 10⁻³ до 10⁻⁵% марганец, бор, стронций, медь, цинк, бром, олово, никель, титан, рубидий, железо, барий, молибден, кобальт, йод


Ультрамикроэлементы ртуть, серебро и др. от 10⁻⁶ до 10⁻¹²%

мышьяк, германий, свинец, золото, радий, ртуть, серебро и др.

Почвенное питание растений

• связано с поглощением воды и минеральных веществ с помощью корневых волосков зоны всасывания корня.

Вода, минеральные вещества → корневые волоски→ клетки корня→ сосуды корня→ сосуды стебля→ сосуды листа→ клетки листа

Корневой перехват

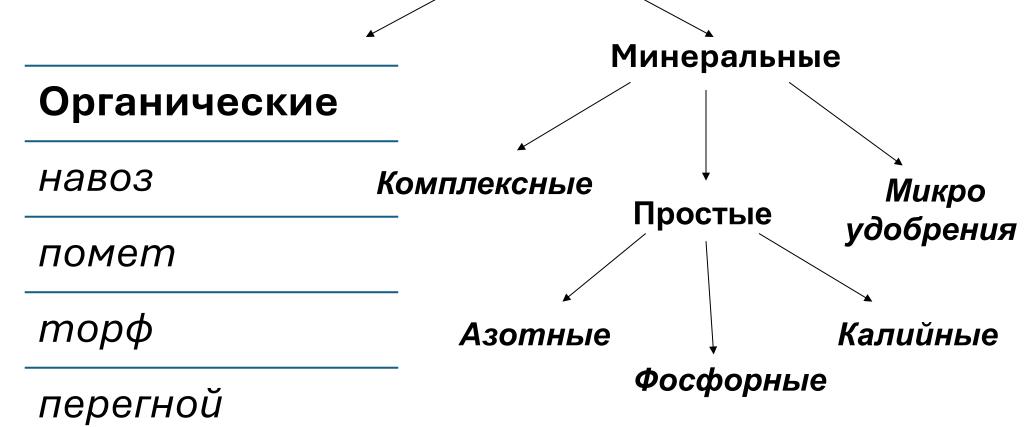
Массовый поток ионов к поверхности корней

Диффузионный поток ионов к корню

В процессе роста корни вступают в контакт с новым объемом почвы из которого и поглощают питательные вещества

Происходит при поглощении корнями воды с растворенными в ней веществами

Происходит на основе градиента концентрации, в направлении которого передвигаются ионы


• Растениям необходимы макроэлементы (азот, фосфор, калий, кальций, магний, сера) и микроэлементы (железо, марганец, цинк, медь, бор, молибден и др.), усваиваемые ими в виде ионов. Макроэлементы служат основными "строительными материалами" для органических молекул и участвуют в ключевых процессах, таких как фотосинтез и энергетический обмен, в то время как микроэлементы входят в состав ферментов, витаминов и других биологически активных веществ, катализируя биохимические реакции и поддерживая иммунитет растений.

Элементы необходимые растениям

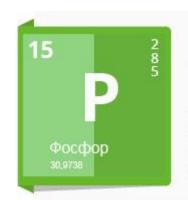
Элемент	Значение
1. Азот	Составная часть всех белков
2. Cepa	Входит в состав витамина В ₁
3. Калий	Влияет на подвижность цитоплазмы и действие ферментов
4.Магний	Входит в состав хлорофилла, необходимого для фотосинтеза
5. Кальций	Уплотняет цитоплазму
6. Железо	Участвует в процессе дыхания
7. Марганец	Нужен для нормального роста растений
8. Медь	Нужна для правильного развития
9. Цинк	Недостаток сказывается на росте
10. Молибден	Нужен для развития листового аппарата

Значение элементов питания

Макроэлементы

Это элементы, необходимые растениям в больших количествах, которые являются компонентами белков, нуклеиновых кислот и других органических веществ.

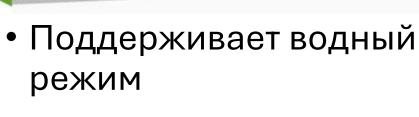
•<u>Азот</u> (N)


- •Физиологическая роль: Важен для синтеза белков, аминокислот и хлорофилла, участвует в фотосинтезе, развитии корневой системы и регуляции обмена веществ.
- •Усвояемые соединения: Обычно усваивается в форме нитрат-ионов (NO_3^-) или аммоний-ионов (NH_4^+) .

Пожелтевшие нижние листья у табака — признак недостатка азота.

ФОСФОР

ПОМОЩЬ В РАЗВИТИИ КОРНЕВОЙ СИСТЕМЫ, СОЦВЕТИЙ И ПЛОДОВ


- Ускорение развития и плодоношения
- Усиление роста
- корней
- Повышение зимостойкости

Нехватка фосфора негативно сказывается на цветении и процессе созревания. Цветки получаются мелкими, плоды часто с дефектами. Если же фосфор в избытке, замедляется обмен веществ в клетках, растения становятся чувствительными к нехватке воды, они хуже усваивают такие питательные элементы, как железо, цинк и калий.

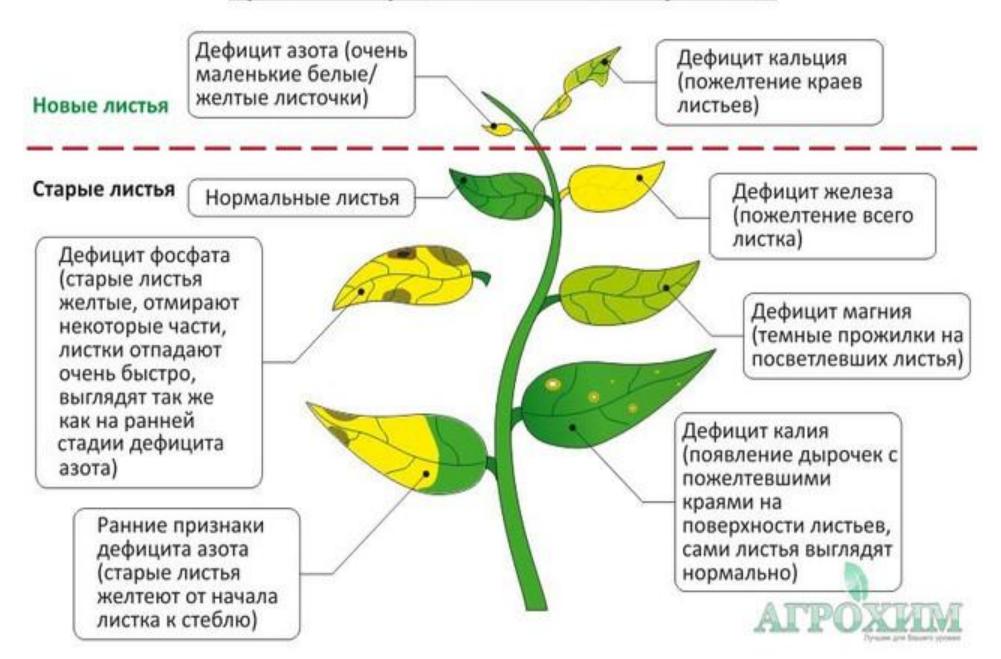
- Повышает морозо- и засухоустойчивость
- Снижение поражаемости заболеваниями

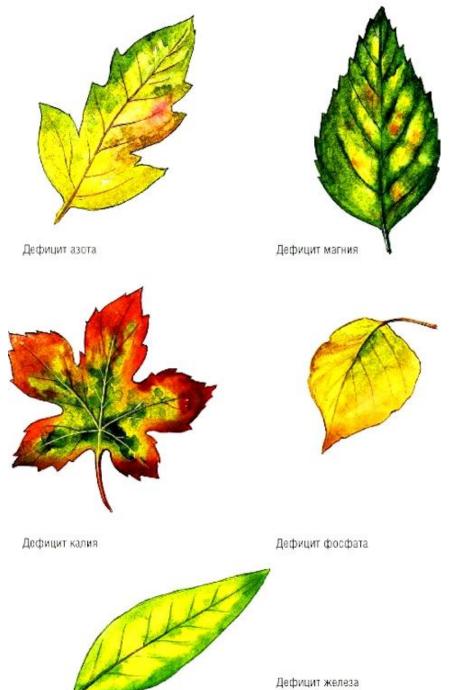
Растения, обедненные калием, можно узнать по отмершим краям листьев, коричневым пятнам и куполообразной их форме.

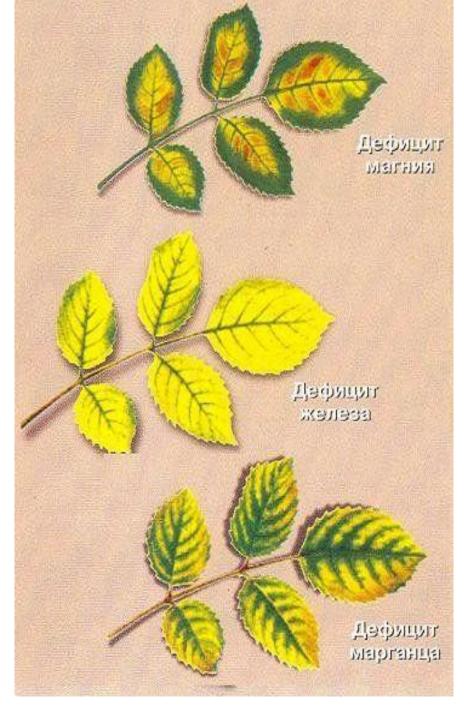
Если калий в избытке, наблюдается замедление всасывания растением азота. Это приводит к остановке роста, деформациям листьев, хлорозу, а на запущенных стадиях к отмиранию листьев.

Cepa

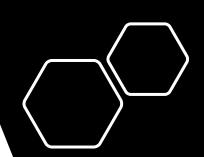
- Является составным элементов протеинов, витаминов, аминокислот цистина и метионина. Участвует в процессах образования хлорофилла.
- Растения, которые испытывают серное голодание, нередко заболевают хлорозом. Болезнь поражает главным образом молодые листья.
- Избыток серы приводит к пожелтению краев листьев, их подворачиванию вовнутрь. Впоследствии края обретают коричневый оттенок и отмирают. В некоторых случаях возможно окрашивание листьев в сиреневый оттенок.


Магний


• Участвует в реакциях с образованием хлорофилла. Является одним из его составных элементов. Способствует синтезу фитинов, содержащихся в семенах и пектинов. Магний активизирует работу энзимов, при участии которых происходит образование углеводов, протеинов, жиров, органических кислот. Он участвует в транспорте питательных веществ, способствует более скорому вызреванию плодов, улучшению их качественных и количественных характеристик, повышению качества семян.



Причины и признаки заболеваний растений

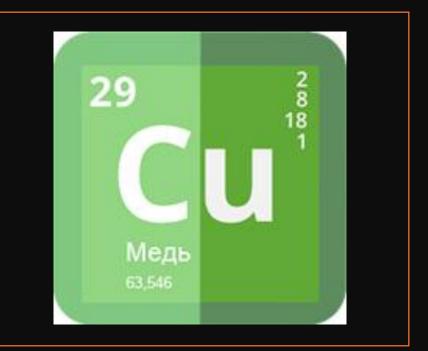


Микроэлементы

• Основными микроэлементами являются: железо, марганец, бор, натрий, цинк, медь, молибден, хлор, никель, кремний. Их роль в жизни растений нельзя недооценивать. Недостаток микроэлементов хоть и не приводит к гибели растений, но сказывается на скорости протекания различных процессов. Это влияет на качество бутонов, плодов и урожаях в целом.

НЕДОСТАТОК ЖЕЛЕЗА У ВИНОГРАДА

Является составным компонентом хлоропластов, участвует в производстве хлорофилла, обмене азота и серы, клеточном дыхании.


Железо – необходимый компонент многих растительных ферментов.

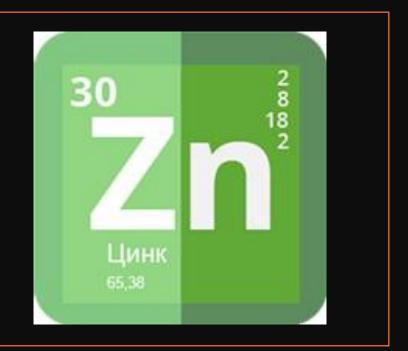
При дефиците этого элемента растения нередко заболевают хлорозом. Нарушаются дыхательные функции, ослабляются реакции фотосинтеза. Верхушечные листья постепенно бледнеют и усыхают.

Медь

- Является элементом медьсодержащих белков, энзимов, участвует в фотосинтезе, регулирует транспорт белков. Медь повышает содержание азота и фосфора в два раза, а также защищает хлорофилл от разрушения.
- Дефицит меди приводит к скручиванию кончиков листьев и хлорозу. Снижается количество пыльцевых зерен, падает урожайность, у деревьев "повисает" крона.

Микроэлементы Избыток/Дефицит Zn Цинк - На новых и молодых листьях проявляется межжилковый хлороз, они растут маленькими, тонкими и искаженными Молодые побеги не - Избыток цинка встречается удлинняются, а растут крайне редко, но очень сгруппировано опасен. Растение отравленное - Обесцвечиваются листья начиная с кончиков и далее, цинком быстро погибает появляются ожоги - Избыток цинка мешает - Уменьшает длина междоузлий, усвоению железа, и, как тормозиться рост новых побегов следствие, проявляется его дефицит уменьшит добыл Breakout, перевёл AMatroskin

Микроэлементы


Марганец

- Активизирует работу ферментов, участвует в синтезировании протеинов, углеводов, витаминов. Марганец также принимает участие в фотосинтезе, дыхании, углеводнобелковом обмене.
- Недостаток марганца приводит к высветлению окраски листьев, появлению отмерших участков. Растения заболеванию хлорозом, у них отмечается недоразвитие корневой системы. В серьезных случаях начинают засыхать и опадать листья, отмирать верхушки веток.

Цинк

• Регулирует окислительновосстановительные процессы. Является компонентом некоторых важных ферментов. Цинк повышает выработку сахарозы и крахмала, содержание в плодах углеводов и белков. Он участвует в реакции фотосинтеза и способствует выработке витаминов. При нехватке цинка растения хуже противостоят холоду и засухе, уменьшается содержание в них белка. Цинковое голодание также приводит к изменению окраски листьев (они желтеют или обретают белесый цвет), уменьшению образования почек, падению урожайности.

Комплексные удобрения

ФлорГумат для Декоративно-цветущих 0,5 л

Удобрение универсальное Цветочный вальс

ефлорГумат для Декоративно-лиственных 0,5 л

Удобрение жидко Для цитрусовых 0,25 л

